
AppBench: Benchmarking AI-Generated Web Applications
Brendan McLaughlin, Belinda Mo, Abhinav Lalwani, Ethan Hellman

Department of Computer Science, Stanford

PROBLEM

As web app generation rapidly advances, there remains a gap in comprehensive
evaluation frameworks which effectively assess technical quality + adherence to user
specifications and requirements. Our project creates a benchmark that assesses AI-
generated web applications across multiple evaluation axes and difficulty levels. We
aim to answer the following questions:

1. How can we construct a dataset to evaluate the ability of frontier models to build
high quality web apps?

2. How can we build a system that conducts fair evaluations of web application qual-
ity & alignment with user specifications?

DATASET

We design a high-quality, high-diversity, and challenging benchmark dataset that:

a) Must be feasible to autonomously evaluate
b) Must maximally span the diversity of real-world web apps

To start, we write 9 app-generation user queries, using 6 evaluation axes:

1. UI Complexity – Visual and structural sophistication
2. Feature Coverage & Functionality – Breadth of supported capabilities
3. State Management – Handling of user interactions and data persistence
4. API Integration – Ability to connect with external services
5. Cross-Page Functionality – Navigation and multi-page interactions
6. Data Processing – Handling and transformation of structured data

There are 5 difficulty levels, ranging from L0 (basic static apps) to L4 (advanced inter-
active app with complex integration)

Example prompts:

L0: "Generate a simple landing page with a header, centered welcome message,
and footer."
L2: "Create a page that includes a search box; when a user enters a city name and
clicks a button, fetch and display basic weather data from an the OpenWeath-
erMap API using this api key: <redacted api key>"
L4: "Design a web app with real-time stock price updates, interactive line charts dis-
playing trends, and a form for submitting trade requests with validation and detailed
error messages."

EVALUATORS

Each example in the APP-bench dataset has a corresponding evaluation script that
flexibly draws from a library of evaluation tools. The evaluation tools are all imple-
mented on top of Playwright. At the most granular level, the evaluator script can
invoke a tool that intercepts and breaks API network requests to test how the user in-
terface handles errors. At the most general level, the evaluator script can invoke a
language model-powered browser agent to navigate ambiguity on the web app.

Example - Mobile Landing Page UI: Score: 6.8/7 Notes:
X Search input field found in mobile view.
X Search button found in mobile view.
X Page title found in mobile view.
Clear, well-organized layout. Search functionality prominently accessible. Minor
overlap issue with ’Edit with lovable’ button slightly detracts from UX.

EXPERIMENTS

We evaluated 7 different agents (Replit, Bolt, Cursor Agent, Loveable, Claude Son-
net 3.7, GPT 4.5, and OpenHands CodeAct 2.1) across our benchmark dataset. We
analyzed performance both by individual agent and by agent type (Closed-Source,
Zero-Shot, and Open-Source).

Figure 1. Comparison Charts

QUALITATIVE RESULTS OF AGENT GENERATIONS

Table 1. *

Qualitative Comparison of 4 Evaluated Code Agents

Replit Loveable

Claude Sonnet 3.7 OpenHands CodeAct 2.1

DISCUSSION

Key findings from our experiments:

Zero-shot models demonstrate surprisingly competitive performance compared to
closed-source agents, despite their simpler architecture and lower compute bud-
get.
Loveable and Bolt emerge as the top-performing agents across our test set.
All agent types show stronger performance (>75% quality score) up to difficulty level
L2.
Performance degradation begins at L3, with a sharp decline at L4 across all agent
types. 2 of 7 agents were unable to generate a compileable application for 1 L4
and 1 L3 task.
The gap between agent types narrows at higher difficulty levels, suggesting funda-
mental limitations in current app generation capabilities.

FUTURE WORK

Add additional prompt-evaluator pairs for higher coverage across the dataset
Improve evaluator script quality by adding additional tooling capabilities and
stricter criteria
Experiment with improving an evaluator agent that may run more accurately
Do more fine-grained experiments to quantitatively show model’s performance
across the defined axes

OTHER APPROACHES TRIED

Unconstrained, just ask a computer use agent to "Evaluate" ⇒ leads to inconsistency
Constrained, predefined unit tests and ask models to fit their generations ⇒ brittle
and inherently limited
Test-suite generation on the fly ⇒ high variance and verifiers break down quickly

Course Project CS 329A: Self-Improving AI Agents Winter 2025


