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Abstract

ARCHON is a modular framework which selects and utilizes a variety of inference-
time techniques to optimize LLM response generation. However, ARCHON
is limited in its number of inference-time components, its lack of web search
capabilities, and its lacking performance using relatively smaller open-source
models. In this paper, we propose an improved multi-component ARCHON
system, using a combination of additional planner, expander, and web search tool
call components to improve the ARCHON architecture performance. We evaluate
ARCHON and our improved architecture on a new dataset, Humanity’s Last Exam,
an unsaturated benchmark for frontier academic knowledge and reasoning. We find
that even though reasoning remains difficult for ARCHON, our multi-component
ARCHON system allows open-source models to rival closed-source performance
and that our web search tool call component significantly improves the instruction-
following capabilities of ARCHON. We make our code publicly available at:
https://github.com/49emily/cs329a-archon/.

1 Introduction

With the rising importance of using inference-time techniques to improve model capabilities, AR-
CHON proposes using a wide variety of LLMs and inference-time techniques to generate LLM
systems more powerful than simply the combination of them (6). However, promising ARCHON
performance in existing benchmarks almost all rely on LLMs with about 70B parameters and different
models also achieve varied performance on sub-tasks within each query category. As a result, we
identified the following potential problems with ARCHON with the hope of improving ARCHON
performance especially on smaller, open-source models:

1. ARCHON only contains seven LLM inference time techniques and there is room to explore
and test more techniques for a wider variety of tasks.

2. ARCHON does not explore Web Search or tool use capabilities to enhance answer genera-
tion.

3. ARCHON pre-defines the category of queries passed into the system without dynamically
adjusting its architecture on a query-by-query basis. Queries are often complex and may not
fit fully into one category. Dynamic customization of possible ARCHON architecture can
lead to more effective and efficient solution for the query at hand.

4. ARCHON explores combinations of 10 SOTA all-source LLMs in its architecture. With
the rise of more open-source models and development of more advanced LLM models,
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we would love to incorporate more SOTA models into the ARCHON architecture and test
ARCHON capabilities in smaller open-source models.

As a result, we set out to answer the question: Can we improve ARCHON performance by adding
more inference-time components and optimizing its architecture to enhance both closed-source
and open-source models? We explored this research question by developing three new inference-
time techniques (Planner, Expander, and Web Search Tool Call) and ran ablation studies exploring
them with existing ARCHON architecture. We found that expander effectiveness depends strongly on
the benchmark, our components can help open-source models rival closed-source model performance
with the base ARCHON framework, web-search can significantly improve instruction following, and
that reasoning remains a difficult task even with newly added components.

2 Related Work

As mentioned above, we are directly building off of the approach presented in ARCHON, which is
a modular framework for selecting, combining, and stacking layersof inference-time techniques to
build optimized LLM systems for specific types of benchmarks. In particular, ARCHON already
builds off of works such as Mixture-of-Agents (MOA) and LLM-Blender that also fall under the
umbrella of multiple-LLM inference-time architectures, but are limited in exploration scope and not
as generalizable beyond certain tasks (9) (4).

ARCHON’s contributions include defining seven different types of LLM components (Generator,
Fuser, Critic, Ranker, Verifier, Unit Test Generator, and Unit Test Evaluator) that are then combined
in layers to form an entire chained system. Then, they conduct inference-time architecture search
(ITAS) to narrow the search space for possible search hyperparameters, and ultimately develop both
general-purpose and task-specific ARCHON architectures that perform better on different respective
evaluation datasets.

In their limitations section, the ARCHON authors state that the "addition of new techniques is a
promising avenue for future research". Therefore, we were motivated to develop at least 1-2 more
unique types of components and experiment further with different architectures in our project, in
order to make ARCHON more robust and query-adaptive (beyond the two general categories of
instruction-following / reasoning and coding established in the paper).

Specifically, inspired by prior work on planning and multi-step reasoning such as ReAct: Synergizing
Reasoning and Acting in Language Models that help LLMs generate reasoning traces and interact
with external sources, we knew we wanted to incorporate a layer dedicated exclusively to planning
(10). Additionally, Toolformer: Language Models Can Teach Themselves to Use Tools showed us how
powerful tool-calling can be for enhancing model performance on a variety of queries at inference
time (7).

3 Methodology

Our key methodology centers on extending the original ARCHON architecture by designing and
integrating three novel inference-time components: the Planner, the Expander, and the Web Search
Tool Call. These modules are designed to enhance reasoning, context-awareness, and instruction-
following capabilities. An overview of our enhanced architecture is shown in Figure[I] and prompts
for each component are included in Appendix [A.T] We build on top of the existing ARCHON code
repository (1)).
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Figure 1: Enhanced ARCHON architecture with Planner, Expander, and Web Search Tool Call

The three novel components introduced are as follows:



1. Planner: Positioned at the start of the pipeline, the Planner component rephrases the
user prompt and generates a clear step-by-step execution plan. This plan is prepended to
subsequent module inputs, ensuring consistent user intent is maintained throughout. This
planner component can not only clearly summarize and rephrase the user prompt and capture
the original user intent, but can also add even more context to the user query to help tackle
hard reasoning questions we evaluate ARCHON on different benchmarks. As mentioned
above in prior work, We were inspired by many of the papers from class discussing how to
improve LLM planning (10).

2. Expander: Following each Generator in the ARCHON architecture, the Expander module
enhances the candidate responses by adding context, elaboration, or clarification. This
augmentation helps downstream modules—such as Critics or Rankers—better assess the
quality of each candidate response.

3. Web Search Tool Call: To address ARCHON’s lack of external grounding, we introduce
a Web Search module placed after the Planner but before the Generator. Inspired by our
Homework 2 assignment, this module first generates ¢ queries based on the reasoning
trace from the Planner, and then retrieves up-to-date and relevant contextual information
by calling the Google Search API, fetching the top 10 webpage results from each query.
This up-to-date and relevant contextual information is used as context for the subsequent
generation module.

We also considered implementing other components such as a rewriter, summarizer, or debugger, but
found these other modules to be either too similar to existing ARCHON components (especially the
verifier) and/or too costly to justify a marginal improvement. Overall, we hypothesized that including
an explicit planner at the beginning of the entire architecture would have the greatest impact on
improving performance, after learning about how crucial, yet difficult, reasoning still is for LLMs (8)).

4 Experiments

4.1 Datasets

We focused on two different datasets when running our experiments: AlpacaEval and Humanity’s
Last Exam.

AlpacaEval is an instruction-following benchmark designed to test LLMs on real-world tasks. It
evaluates models using automated pairwise comparisons against top-performing LLMs like GPT-4
and Claude 3.5. Unlike factual benchmarks, AlpacaEval measures response quality, clarity, and
adherence to instructions (3). We use it to ensure ARCHON’s inference-time optimizations improve
usability and human alignment while maintaining accuracy. Since AlpacaEval was used as a dataset
in the original ARCHON paper, we think running our experiments against this dataset will easily
help us identify the benefits and drawbacks of our methodology.

In addition, we also used the Humanity’s Last Exam dataset to run our experiments. This is a
multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended
academic benchmark of its kind with broad subject coverage. It contains 2,700 challenging questions
across over a hundred subjects, and is one of the prominent benchmarks that has been unsaturated
by frontier LLMs (5). We use a subset of HLE (500 questions, limited by compute) to evaluate
whether Archon’s improvements enhance deep reasoning, problem-solving, and model calibration at
the highest difficulty level. We chose this benchmark because HLE is a relatively unsaturated dataset
which can easily expose strongsuits and inefficiencies of our improved ARCHON architecture.

4.2 Ablation Experiments

To isolate the impact of each added component, we conducted ablation studies comparing the full
multi-component ARCHON system with versions missing one or more of our proposed modules.
These studies aimed to answer two core questions: (1) which components contribute the most to
performance across benchmarks, and (2) how do different module combinations affect open-source vs.
closed-source model capabilities. We ran controlled experiments across both AlpacaEval and HLE
to examine module effectiveness under different task demands—specifically instruction-following
versus deep reasoning.



4.3 Configuration Details

We evaluated our improved ARCHON architecture under two major configurations: an open-source
configuration and a closed-source configuration. Both setups used different sets of LLMs but shared
the same experimental protocols, benchmarks, and component layering.

Closed-Source Configuration: This setup uses OpenAI’s GPT-4o for both generation and ranking,
with Qwen2-72B-Instruct acting as the critic and fuser. This allows us to leverage the strengths of
proprietary models while evaluating the marginal benefits of our added inference-time modules.

Open-Source Configuration: For open-source testing, we used an ensemble of models including
Qwen2-72B-Instruct, DeepSeek R1 Distill, WizardLM-2 8x22B, QwQ-32B, LLaMA-3 70B Chat,
and Mixtral 8x22B. These models collaboratively handled generation, while Qwen2-72B-Instruct
was used across critic, ranker, and fuser layers.

Exact module-by-module architecture for both configurations is detailed in Appendix [A.3]

5 Results

We found that on Humanity’s Last Exam, the best performance at 4.2% was achieved with a closed-
source configuration of Planner + Expander + ARCHON using GPT-40 models. The open-soure
configuration of the same setup had an accuracy of 3.8%. These results are slightly better than
zero-shot GPT-40, which achieves a 3.1% accuracy. We found that using a Tool Call module actually
decreased performance, since the web results were oftentimes not applicable to the question or
included too much miscellaneous text on the webpage, and confused the models. The complete
results can be found in Table[?]and Figure ]

On AlpacaEval, we saw significant improvement through using all of our new modules, which
boosted both open-source and closed-source performance. Using Planner + Tool Call + Expander
+ ARCHON boosted the length-controlled win rate of our open-source config to 73.92% and that
of our closed-source config to 73.40%. Most notably, adding our modules, especially the Planner,
helped our open-source performance, which started more than 10 points lower than closed-source
on base ARCHON, rival and even exceed the closed-source performance. The complete results on
AlpacaEval can be found in Table 3|and Figure[5]

Architecture Closed Source Models Open Source Models
ARCHON 3.3% (15 /453) 3.3% (15 /453)
Planner + ARCHON 3.3% (15 /453) 2.6% (12 /453)
Planner + Expander + ARCHON 4.2% (19 /453) 3.8% (17 /453)
Planner + Tool Call + Expander + ARCHON 3.3% (15/453) 2.9% (13 /453)

Figure 2: Table of HLE Results

Architecture Closed Source Models Mixed Source Models
ARCHON 67.73% 57.01%
Planner + ARCHON 69.62% 67.06%
Planner + Expander + ARCHON 66.01% 68.30%
Planner + Tool Call + Expander + ARCHON 73.40% 73.92%

Figure 3: Table of Length-Controlled AlpacaEval Results
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Figure 5: Performance on AlpacaEval

6 Conclusion and Discussion

Our investigation into improving ARCHON through additional inference-time components reveals
several key insights. By integrating new modules such as the Planner, Expander, and Web Search
Tool Call, we observed notable improvements in model performance across different benchmarks,
with varying degrees of effectiveness.

First, our experiments on the length-controlled AlpacaEval dataset indicate that while the Expander
module generally improves response quality, its impact is limited due to the dataset’s preference
for concise answers. However, the Planner module consistently aids in structuring responses more
effectively, improving overall performance. Additionally, the Tool Call module significantly enhanced

performance, increasing AlpacaEval scores to above 70%, outperforming all modules in the original
ARCHON architecture.

Second, we found that incorporating additional inference-time techniques allowed open-source
models to rival the performance of closed-source models. Specifically, the Planner and Tool Call
modules enabled open-source models to match closed-source performance in instruction-following
and information retrieval tasks while maintaining computational efficiency.



Third, our results suggest that the effectiveness of specific modules depends heavily on the benchmark.
The Expander module, though less impactful in AlpacaEval, proved beneficial in the Humanity’s Last
Exam (HLE) dataset by enhancing reasoning capabilities. This highlights the importance of tailoring
inference-time techniques to specific tasks and evaluation criteria.

Furthermore, we observed that web search capabilities substantially improve instruction-following
accuracy on AlpacaEval. The Tool Call module played a crucial role in grounding responses with
external knowledge, leading to more accurate and contextually relevant responses. Yet, web search
capabilities were less effective on HLE, requiring more reasoning capabilities than information
retrieval. However, the fact that OpenAI’s Deep Research (2) scored a new high of 26.6% on HLE
suggests that there is still a benefit in external tool calls like web search and room to experiment in
using iterative planning/web search loops.

Finally, despite our improvements, reasoning remains a significant challenge. While our efforts with
Expander improved performance on HLE, these were not sufficient to overcome reasoning limitations.
This suggests that future work should focus on more sophisticated reasoning techniques, such as
hierarchical planning or multi-step verification mechanisms.

In summary, our study demonstrates that enhancing ARCHON with additional inference-time compo-
nents can lead to meaningful performance improvements. However, the success of these techniques
depends on the nature of the task, the benchmark used, and the adaptability of the architecture. Future
work will focus on a Query-Adaptive Planner to dynamically tailor the architecture per prompt,
explore additional tool calls for improved knowledge access, implement early stopping to balance
cost and quality, assess whether these modules can offset smaller model sizes without sacrificing
accuracy, and investigate additional reasoning-enhancement strategies by leveraging process reward
models or other frameworks.
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A Appendix

A.1 Custom Component Prompts

A.1.1 Planner

System: “You are an expert at planning and reasoning given a user query. Once you receive a user
query, you should do the following steps:
1. Summarize what the user is asking in a clearer way.
2. Provide a step-by-step reasoning process on what you need to do in order to fully answer
the user query."

User: “You have been provided with a user’s query: {query}. Please summarize the user query and
provide a step-by-step reasoning process to fully answer the user query."

A.1.2 Expander

System: “You are an expert at expanding and enriching responses with additional context and details.
When expanding a response:

. Only add information that is directly relevant to the original response.

. Maintain factual accuracy and consistency with the original.

. Focus on adding valuable context that enhances understanding.

. Keep additions clear and well-structured.

whn AW N =

. Do not contradict or modify the original content.”

User: “You have been provided with a user query and an AI’s response to that query. Your task is
to enhance this response by providing additional relevant context and details. Keep your additions
focused and directly relevant to the original response. User Query: {query} Original Response:
{original_response} Please provide additional context, examples, or clarifying details that would
enhance the original response. Focus on information that adds value while maintaining relevance to
the query. Do not contradict or modify the original response."

A.2 Tool Call Web Search

1. For generating queries
User: “Given a user’s query and a step-by-step analysis of the solution, output
{num_searches} search queries to find more information to help answer the user’s query.
Output the search queries in a comma-separated list, do not include any other text. User
Query: {query} Step-by-Step Analysis: {reasoning_output}"

2. Augmenting Generation module
“Use these search results to improve your answer to the user’s query: {search_results"

A.3 Archon Architecture Configurations
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Figure 6: System architecture overview of the Archon framework
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Figure 7: Planner module responsible for decomposing tasks into subtasks
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Figure 8: Expander component illustrating task expansion and refinement
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Figure 9: Tool call handler coordinating execution of external tools
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Figure 10: Query adaptive component optimizing prompts based on task context
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