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Abstract

Recent works began to automate the design of
agentic systems using meta-agents that propose
and iteratively refine new agent architectures.
In this paper, we examine three key challenges
in a common class of meta-agents. First, we
investigate how a meta-agent learns across iter-
ations and find that simply expanding the con-
text with all previous agents, as proposed by
previous works, performs worse than ignoring
prior designs entirely. We show that the perfor-
mance improves with an evolutionary approach.
Second, although the meta-agent designs multi-
ple agents during training, it typically commits
to a single agent at test time. We find that the
designed agents have low behavioral diversity,
limiting the potential for their complementary
use. Third, we assess when automated design is
economically viable. We find that only in a few
cases—specifically, two datasets—the overall
cost of designing and deploying the agents is
lower than that of human-designed agents when
deployed on over 15,000 examples. In contrast,
the performance gains for other datasets do not
justify the design cost, regardless of scale.

1 Introduction

Agentic systems powered by language models
demonstrated remarkable abilities to perform com-
plex tasks and became a transformative force in
many domains, including cutting-edge research
and development (Swanson et al., 2024; Lu et al.,
2024a; Yamada et al., 2025), financial services (Ok-
pala et al., 2025; Xiao et al., 2025), and task au-
tomation (Fourney et al., 2024). Until recently,
these systems were designed by researchers who
built their domain knowledge into their agent archi-
tectures. However, a persistent trend in machine
learning research, known as the Bitter Lesson (Sut-
ton, 2019), suggests that hand-designed solutions
are eventually replaced by solutions developed via
scalable approaches that leverage search and learn-
ing. To this end, recent works have taken the first

steps in the direction of automating the design of
agentic systems (Hu et al., 2024; Li et al., 2024;
Saad-Falcon et al., 2024; Niu et al., 2025; Nie et al.,
2025; Shang et al., 2025; Wang et al., 2025; Ye
et al., 2025; Zhang et al., 2025b,a). Our work fo-
cuses on a common class of meta-agents that follow
the sample–evaluate–iterate pattern (see Figure 1,
Algorithm 1) and highlights three challenges.

Meta Learning We begin by examining the as-
sumption that the meta-agent effectively learns
from previously discovered agents. Our analysis
reveals that the meta-agent framework proposed
by Hu et al. (2024) does not meaningfully leverage
prior designs. In fact, it performs worse than a base-
line that ignores prior designs entirely. In contrast,
we demonstrate that an evolutionary context cura-
tion strategy, where the generation of the next agent
is conditioned on the previous best-performing
agents (parents), yields improved performance.

Diversity and Complementarity While the
meta-agent generates a set of candidate agents, typ-
ically only one is deployed, neglecting potential
synergies among them. If the designed agents were
behaviorally diverse, where each specializes in par-
ticular types of queries, this would enable dynamic
selection of the most suitable agent per query. How-
ever, we find that the designed agents often lack be-
havioral diversity, which is even more pronounced
when evolutionary strategies are used.

Economic Viability For a meta-agent to be eco-
nomically viable, the fixed cost of designing a new
agent must be justified by corresponding improve-
ments in performance. We formalize this trade-off
by defining the total cost of a meta-designed agent
as the sum of a fixed design cost and a per-example
inference cost. This raises the key question: How
many test examples are needed before the cost per
correct response becomes lower when using the
designed agent? In our experiments, we find this
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Figure 1: Overview of the meta-agent framework. The Meta-Agent iteratively samples and evaluates agents,
refining its outputs through a feedback loop. We focus on three key dimensions: (1) learning from previously
designed agents; (2) diversity and complementarity of generated agents; and (3) economic viability.

break-even point occurs at approximately 15,000
examples for MMLU and DROP. In contrast, for
other datasets, the performance gains do not justify
the design cost, regardless of the scale of deploy-
ment.

2 Related Works

Our primary reference is ADAS (Hu et al., 2024),
which has introduced meta-agent search with the
idea of searching for agents in the code space.
MAS-GPT (Ye et al., 2025) and ScoreFlow (Wang
et al., 2025) develop meta-agents by training a
model to dynamically generate multi-agent systems
for a given query. AgentSquare (Shang et al., 2025)
and Archon (Saad-Falcon et al., 2024) explore mod-
ular agent architectures and use discrete module
recombination to efficiently search design spaces.
AutoFlow (Li et al., 2024), Weak-for-Strong (Nie
et al., 2025), and ADAS (Hu et al., 2024) use a
meta agent that follows the sample-evaluate-iterate
paradigm (Algorithm 1). Other recent meta-agent
approaches include Multi-agent Supernet (Zhang
et al., 2025a), Flow (Niu et al., 2025), and AFlow
(Zhang et al., 2025b). Erol et al. (2025) examined
the cost of producing a correct response, which is
directly relevant to our economic viability analysis.

Algorithm 1 Meta Agent: Sample-Evaluate-Iterate

1: Dtrain # set of training examples
2: F # initial agents library
3: A = {(f0i , s0i) | f0i ∈ F} # archive
4: for t in [T ] do
5: Â = ϕ(A) # select current context
6: ft ∼ Π(· | Â) # sample, revise, debug
7: st = eval(ft) # evaluate
8: A.append(ft, st) # add to archive
9: # iterate

10: end for=0

3 Setup

Following Hu et al. (2024), we define an agent
as a computer program that takes a question as
input and makes language model calls to com-
pute the answer. Let fi denote an agent and score
si = eval(fi, Dtrain) ∈ RNtrain be the evaluation
vector containing the agent i’s evaluation scores for
each example in the training dataset Dtrain. The
agent fi is represented by code. The archive, A, is a
set of discovered agents {fi} and their correspond-
ing evaluations on the training set. We initialize
the archive with the agents in the initial agents li-
brary, F , and their corresponding evaluations.1 At
each iteration, the meta-agent samples a new agent
design using a language model, Π, conditioned on
a curated subset of the current archive, Â. The
function ϕ implements this curation step. The sam-
pling step is followed by revisions to ensure proper
formatting and debugging with execution feedback.
Finally, the new agent, ft, is added to the archive
A.2 Algorithm 1 outlines the design procedure.
We experiment with three instantiations of context
curation (ϕ):

Cumulative. ϕC is identity, and the generation of
the next agent is conditioned on all the previously
discovered architectures, as in Hu et al. (2024).

Parallel. ϕP maps any archive to only the sub-
set that contains 7 agents in the initial library and
corresponding evaluation scores. Hence, the meta-
agent ignores the previously designed architectures,
effectively parallel sampling the new agents.

Evolutionary. ϕE selects a subset of 7 agents
with the best evaluation scores (top-k selection strat-
egy) from A to be the parents of the next agent

1The content of the initial agents library is discussed in
Appendix A.1.

2Appendix A.2 details the configurations we use in our
experiments.



Dataset Best Agent Best-5 Avg. Best-10 Avg. Best-15 Avg. Test Performance (Best Agent)

C P E C P E C P E C P E I C P E

DROP
71.4
(2.0)

72.5
(4.2)

74.4
(3.2)

68.1
(1.1)

69.3
(1.2)

71.5
(4.5)

66.6
(0.8)

66.8
(1.1)

69.7
(4.7)

64.9
(0.6)

64.9
(1.8)

68.2
(4.7)

64.8
(1.3)

71.9
(3.2)

72.6
(7.8)

73.2
(5.1)

MGSM
41.4
(6.2)

56.2
(10.5)

56.5
(4.7)

32.5
(13.8)

48.4
(9.8)

50.4
(0.8)

27.4
(16.6)

43.4
(7.9)

46.0
(1.6)

22.4
(17.1)

39.8
(5.3)

42.7
(2.5)

38.4
(2.8)

41.2
(4.8)

51.8
(7.6)

53.5
(2.0)

MMLU
74.7
(2.0)

76.3
(1.6)

76.6
(2.7)

73.0
(2.1)

73.8
(2.4)

74.8
(2.7)

70.3
(5.2)

72.4
(2.5)

73.7
(2.4)

68.0
(8.0)

71.1
(3.0)

72.7
(2.3)

62.8
(2.3)

66.2
(4.2)

67.8
(0.8)

65.8
(3.3)

GPQA
32.3
(2.6)

35.2
(2.8)

33.8
(2.2)

26.4
(8.7)

32.2
(1.5)

31.2
(0.9)

22.5
(12.4)

30.4
(1.1)

29.8
(0.8)

20.7
(13.2)

29.1
(0.6)

28.8
(0.5)

30.0
(2.4)

29.7
(2.7)

31.3
(0.0)

28.5
(3.1)

Avg. 55.0 60.0 60.3 50.0 55.9 57.0 46.7 53.2 54.8 44.0 51.2 53.1 49.0 52.2 55.9 55.2

Table 1: Meta-Agent Performance: Parallel context curation outperforms cumulative curation, while evolu-
tionary approaches lead to further improvements. Columns 1–12 report performance on Dtrain for: the single
Best Agent (cols 1–3), and the averages of the top 5 (cols 4–6), top 10 (cols 7–9), and top 15 (cols 10–12) agents,
evaluated under three context curation strategies: Cumulative (C), Parallel (P), and Evolutionary (E). Columns 13–16
show the Dtest performance of the agent that achieves the highest score on Dtrain. I denotes the test performance
of the best agent from the Initial library selected based on its training performance. Averaged across 3 runs.

generation. The generation of the next agent is
conditioned on this higher-quality subset of the pre-
viously discovered architectures at each iteration.

Tasks and Models Closely following the prior
work (Hu et al., 2024), we evaluate our agentic de-
sign setup on 1) mathematical reasoning abilities in
a multi-lingual setting, MGSM, (Shi et al., 2022),
2) reading comprehension, DROP, (Dua et al.,
2019), 3) multi-task problem solving, MMLU,
(Hendrycks et al., 2021), and 4) graduate-level sci-
ence questions, GPQA (Rein et al., 2023). From
these datasets, we sample disjoint subsets Dtrain

to compute si, and Dtest to be used as held-out
evaluation. The details of our experimental setup
are explained in Appendix A.2. All the results we
report are averaged across 3 runs.

4 Experiments

4.1 Learning
Table 1 compares three context curation strategies
for meta-agent design. We find that cumulative con-
text curation does not outperform parallel context
curation, suggesting that ADAS-style meta-agents
derive limited benefits from prior agent designs and
perform worse than ignoring prior designs entirely.

In contrast, evolutionary context curation im-
proves performance, yielding up to a +10% gain
over cumulative context on MGSM. This suggests
that selectively including high-quality prior designs
in context enables more effective meta-learning.

4.2 Diversity and Complementarity
To investigate the potential synergies between the
generated agents, we turn our attention to the be-

havioral diversity of the agent pool and analyze
whether the agents have similar behavior on train-
ing examples. How often the questions they get
right overlap? Do they make the same mistakes?

We analyze agent diversity by computing sim-
ilarities between evaluation vectors. Let si =
eval(fi, Dtrain) ∈ RNtrain be the evaluation vec-
tor for agent fi. Stacking si as rows, we obtain
S, which, in effect, represents embeddings of each
agent from the perspective of the training questions
(see Figure 6). We then compute the cosine similar-
ity matrix C, where the entry i, j corresponds to the
cosine similarity ⟨si, sj⟩ (see Figure 7). This pair-
wise similarity metric favors agents that succeed
on the same examples. We show the histograms
of pairwise similarities (entries of C) in Figure 8
and the histograms for the average similarity of an
agent to the rest of the agents (row averages of C)
in Figure 2.

Figure 2 shows the similarity distributions, with
evolutionary context curation generally exhibiting
higher similarity scores. We observe that cumula-
tive context curation yield lower similarity overall
compared to parallel and evolutionary context cu-
ration. Moreover, while parallel and evolutionary
context curation yield similar performance, parallel
context curation exhibits slightly lower similarity
and produces more diverse agents. Notably, in
GPQA, parallel context curation yields both better-
performing and more diverse agents.

Our analysis of coverage (Table 2)—the propor-
tion of questions correctly answered at least by one
of the designed agents—shows that parallel context
curation yields the highest coverage, highlighting
its effectiveness in promoting exploration.



Figure 2: Agent Diversity: Cumulative context curation yields lower overall similarity. Parallel context
curation produces greater agent diversity compared to evolutionary curation, highlighting an exploration ex-
ploitation trade-off. Histograms of agent similarities (row averages of C), excluding agents with zero performance
(all-black rows of S in Figure 6, and corresponding dark blue rows and columns of C in Figure 7). Each subplot
shows histograms of averaged similarity scores for each agent (x-axis) and their frequency (y-axis) across 3 runs.

4.3 Economic Viability

In Figure 3, we observe that the agents designed
using ϕC have the highest average inference costs,
followed by those designed using evolutionary con-
text, ϕE . Among the meta agents, the one that uses
parallel context curation produces the least costly
agents on average, a trend also observed among
the best-performing agents (Figure 5). However,
agents designed by the meta agent still remain more
costly than those in the initial library.

Figure 3: Average inference cost per test query: C
> E > P > I. For agents in the initial library F (Initial,
see Appendix A.1), agents designed by meta agent with
ϕC (Cumulative), agents designed by meta agent with
ϕP (Parallel) , agents designed by meta agent with ϕE

(Evolutionary). Averaged across all agents from 3 runs.

To identify the point where the cost per correct
response of a designed agent becomes lower than
the agents in the initial agents library, we combine
the inference cost of the best agent (Figure 5) with
the fixed cost of agent design. The fixed design
cost, C0, includes the total cost of all the sampling
step (Algorithm 1, line 6; Figure 12) and evaluation
costs to compute si (Algorithm 1, line 7). The total
cost of an agent is the sum of C0 and a per-example
inference cost, Cj :C0 + n · Cj .

In Figure 4, the intersection of the red solid line
with another solid line marks the break-even point,

where deploying the meta-agent lowers the cost per
correct response. This occurs at approximately
n = 15,000 examples for DROP and MMLU
with parallel context curation. In contrast, for
other datasets and context curation methods, per-
formance gains do not justify the associated costs
at any scale.

Figure 4: Cost Efficiency: Highest performing agent
from the initial library generates the outputs with
same total performance at lower cost. Number of
questions solved (solid lines) and attempted (dashed
lines) versus cost spent for agents with best training set
performance. The x-intercept indicates the fixed cost C0

(0 for agents in initial library); the slope beyond reflects
variable cost per attempt or per solution.

5 Conclusion

Our analysis highlights key trade-offs between (1)
final performance and behavioral diversity and (2)
performance relative to cost. Evolutionary context
curation boosts performance but reduces diversity.
While meta-agent-driven design can produce cost-
effective agents in some cases, the performance
gains rarely justify the increased design and infer-
ence costs, even at scale.



Limitations

Scope Our work focuses on a class of meta-agent
approaches that follow the sample–evaluate–iterate
pattern. While restricting our scope to this setup
enables us to highlight general patterns, our find-
ings may not apply directly to the broader space of
possible meta-agent paradigms.

Evaluation We evaluate performance primarily
in terms of accuracy and F-1 scores. Our findings
may not directly translate to domains where consis-
tency is critical, or where different utility metrics
are more appropriate.

Economic Viability Our analysis of economic
viability is most suited for domains with strong
verifiers as it emphasizes the cost of sampling a
correct or high-performing answer. Other formula-
tions may be better suited for different applications.

Similarity Computation Cosine similarity fa-
vors alignment between agents that succeed on the
same examples. The metric reaches its maximum
(1) when agents can solve the same set of questions.
However, favoring alignment introduces an overall
bias toward high-performing agents. Due to this
bias, high-performing agents appear more similar,
whereas agents that fail consistently appear orthog-
onal. As a robustness check, we also computed
Hamming distances between binary score vectors
and observed similar trends (Figure 9, 10).

Meta Evaluation Meta-agent evaluations in-
volve multiple sources of stochasticity, including
(1) LM output randomness, (2) error propagation
in chained reasoning inside agents, (3) sampling
variability of the meta-agent, (4) stochasticity in
evaluation results for the designed agents, which
can then lead the trajectories in different directions,
and (5) meta trajectory-level divergence due to the
differences in chains of sampled agents and their
evaluation scores. Robust evaluation thus requires
multiple trajectory samples for reliable conclusions.
Due to the extensive costs of larger scale evalua-
tions, the results we present are averaged across 3
runs.

Safety Considerations

For meta-agents, the unchecked generation and exe-
cution of complex systems may present safety risks.
Such systems are difficult to audit or control prior
to deployment within automated design loops.
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A Experimental Setup Details

A.1 Initial Agents Library

Our initial agent library, F , consists of the follow-
ing methods: (1) Chain-of-Thought (Wei et al.,
2023), which prompts the language model to out-
put its reasoning before arriving at an answer; (2)
Majority Voting, which selects the consensus re-
sponse from multiple generated answers; (3) Re-
finement from Feedback (Madaan et al., 2023),
where the model iteratively improves its answer
based on self-feedback; (4) LLM-Debate (Du
et al., 2023), where multiple language model in-
stances are prompted to debate with each other; (5)
Quality-Diversity (Lu et al., 2024b), which gener-
ates and ensembles diverse responses; (6) Routing,
which directs tasks to the most appropriate lan-
guage model instances prompted to behave like an
expert of a subject; and (7) Stepping-back (Hu
et al., 2024), which encourages the model to first
reflect on relevant scientific principles before an-
swering. This is consistent with the setup in Hu
et al. (2024).

A.2 Experimental Setup

Number of Iterations. In all our experiments, we
use T = 30.

Dataset Size. For each of our MGSM, MMLU,
DROP datasets, we select 128 examples from our
dataset as training examples, denoted as Dtrain,
and 200 examples as test examples, denoted as
Dtest. For GPQA, we use 32 samples as training
examples and the remaining 160 samples as test
examples. To reduce the variance during training,
we use each training example from GPQA 5 times
and compute scores using 5×32 = 160 evaluations.
Performance is measured using F1-score for DROP
and accuracy for the other datasets.

Models. In our experiments, we use gpt-3.5 as
the engine of the LanguageModel class. We use a
larger, more powerful model, gpt-4o, as the engine
of the meta-agent. This is consistent with the setup
in Hu et al. (2024).

B Other Related Works

Agentic Systems Agentic systems have demon-
strated remarkable success across a range of do-
mains. Several agentic systems have advanced sci-
entific automation, including frameworks for end-
to-end research (Lu et al., 2024a), autonomous pa-
per writing (Yamada et al., 2025), nanobody design
in a virtual lab (Swanson et al., 2024), and multi-
agent ideation (Su et al., 2025). Beyond research,
agentic systems have demonstrated effectiveness
in complex operational contexts, including gen-
eralist problem-solving (Fourney et al., 2024; Lu
et al., 2025), financial modeling and trading (Ok-
pala et al., 2025; Xiao et al., 2025), and robotics
manipulation (Singh et al., 2024).

Recursive Self-Improvement STOP (Zelikman
et al., 2024), Promptbreeder (Fernando et al., 2023),
Gödel Agent (Yin et al., 2025), and Zhou et al.
(2024) implement recursive self-improvement by
enabling agents to iteratively refine their own
prompts, code, or internal reasoning logic.

C Additional Results

Setting DROP MGSM MMLU GPQA Avg.

C 96.6 89.1 99.2 91.9 94.2
P 96.0 95.3 97.7 94.4 95.9
E 93.6 93.0 99.2 91.9 94.4

Table 2: Coverage. Proportion of questions correctly
answered at least by one of the designed agents. The
designed agents includes all 90 agents designed across
3 runs.

Figure 5: Average inference cost per test query of
the best agents. For best agent in the initial library F
(Initial, see Appendix A.1), best agent designed by meta
agent with ϕC (Cumulative), best agents designed by
meta agent with ϕP (Parallel) , best agent designed by
meta agent with ϕE (Evolutionary). Averaged across
the single best agents from 3 runs. Best agent is selected
based on the highest training performance.
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Figure 6: Score matrix S, where each row corresponds to an agent and each column to a dataset example. A cell
is white if the agent answers correctly and black otherwise. For DROP, gray indicates intermediate F1 scores;
for GPQA, gray denotes partial correctness across repeated attempts. The normalized rows, si, serve as agent
embeddings, capturing performance across training questions.

Figure 7: Cosine similarity matrix C, with agents reordered by descending average similarity to all other agents.

Figure 8: Histograms of agent similarities (entries of C), excluding agents with zero performance (all black rows of
S in Figure 6, and corresponding dark blue rows and columns of C in Figure 7). Only the upper triangular entries
of C (excluding the diagonal) are used, as C is symmetric. Each subplot shows histograms of similarity scores
(x-axis) and their frequency (y-axis).



Figure 9: Figure 2 with (1 - Hamming distance) as the similarity metric. All nonzero entries of S are set to 1.

Figure 10: Figure 8 with (1 - Hamming distance) as the similarity metric. All nonzero entries of S are set to 1.

Figure 11: Training performance of designed agents across iterations. The dotted red line shows the performance of
the best agent from the initial library.



Figure 12: Design cost of the next agent across iterations. While costs remain stable with Parallel and Evolutionary
context curation, they increase linearly with increasing context length in Cumulative context curation.
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